\(\int \cos (c+d x) (a+b \sec (c+d x))^3 (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [881]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 192 \[ \int \cos (c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a^2 (3 A b+a B) x+\frac {\left (6 a^2 b B+b^3 B+2 a^3 C+3 a b^2 (2 A+C)\right ) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {A (a+b \sec (c+d x))^3 \sin (c+d x)}{d}+\frac {b \left (9 a b B-a^2 (6 A-8 C)+b^2 (3 A+2 C)\right ) \tan (c+d x)}{3 d}-\frac {b^2 (6 a A-3 b B-5 a C) \sec (c+d x) \tan (c+d x)}{6 d}-\frac {b (3 A-C) (a+b \sec (c+d x))^2 \tan (c+d x)}{3 d} \]

[Out]

a^2*(3*A*b+B*a)*x+1/2*(6*B*a^2*b+B*b^3+2*a^3*C+3*a*b^2*(2*A+C))*arctanh(sin(d*x+c))/d+A*(a+b*sec(d*x+c))^3*sin
(d*x+c)/d+1/3*b*(9*B*a*b-a^2*(6*A-8*C)+b^2*(3*A+2*C))*tan(d*x+c)/d-1/6*b^2*(6*A*a-3*B*b-5*C*a)*sec(d*x+c)*tan(
d*x+c)/d-1/3*b*(3*A-C)*(a+b*sec(d*x+c))^2*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {4179, 4141, 4133, 3855, 3852, 8} \[ \int \cos (c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {b \tan (c+d x) \left (-\left (a^2 (6 A-8 C)\right )+9 a b B+b^2 (3 A+2 C)\right )}{3 d}+a^2 x (a B+3 A b)+\frac {\left (2 a^3 C+6 a^2 b B+3 a b^2 (2 A+C)+b^3 B\right ) \text {arctanh}(\sin (c+d x))}{2 d}-\frac {b^2 \tan (c+d x) \sec (c+d x) (6 a A-5 a C-3 b B)}{6 d}-\frac {b (3 A-C) \tan (c+d x) (a+b \sec (c+d x))^2}{3 d}+\frac {A \sin (c+d x) (a+b \sec (c+d x))^3}{d} \]

[In]

Int[Cos[c + d*x]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

a^2*(3*A*b + a*B)*x + ((6*a^2*b*B + b^3*B + 2*a^3*C + 3*a*b^2*(2*A + C))*ArcTanh[Sin[c + d*x]])/(2*d) + (A*(a
+ b*Sec[c + d*x])^3*Sin[c + d*x])/d + (b*(9*a*b*B - a^2*(6*A - 8*C) + b^2*(3*A + 2*C))*Tan[c + d*x])/(3*d) - (
b^2*(6*a*A - 3*b*B - 5*a*C)*Sec[c + d*x]*Tan[c + d*x])/(6*d) - (b*(3*A - C)*(a + b*Sec[c + d*x])^2*Tan[c + d*x
])/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 4133

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_)), x_Symbol] :> Simp[(-b)*C*Csc[e + f*x]*(Cot[e + f*x]/(2*f)), x] + Dist[1/2, Int[Simp[2*A*a + (2*B*a + b
*(2*A + C))*Csc[e + f*x] + 2*(a*C + B*b)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x]

Rule 4141

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), I
nt[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*A*(m + 1) + ((A*b + a*B)*(m + 1) + b*C*m)*Csc[e + f*x] + (b*B*(m + 1) +
 a*C*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]

Rule 4179

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*
m - a*B*n - (b*B*n + a*(C*n + A*(n + 1)))*Csc[e + f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {A (a+b \sec (c+d x))^3 \sin (c+d x)}{d}+\int (a+b \sec (c+d x))^2 \left (3 A b+a B+(b B+a C) \sec (c+d x)-b (3 A-C) \sec ^2(c+d x)\right ) \, dx \\ & = \frac {A (a+b \sec (c+d x))^3 \sin (c+d x)}{d}-\frac {b (3 A-C) (a+b \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {1}{3} \int (a+b \sec (c+d x)) \left (3 a (3 A b+a B)+\left (3 A b^2+6 a b B+3 a^2 C+2 b^2 C\right ) \sec (c+d x)-b (6 a A-3 b B-5 a C) \sec ^2(c+d x)\right ) \, dx \\ & = \frac {A (a+b \sec (c+d x))^3 \sin (c+d x)}{d}-\frac {b^2 (6 a A-3 b B-5 a C) \sec (c+d x) \tan (c+d x)}{6 d}-\frac {b (3 A-C) (a+b \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {1}{6} \int \left (6 a^2 (3 A b+a B)+3 \left (6 a^2 b B+b^3 B+2 a^3 C+3 a b^2 (2 A+C)\right ) \sec (c+d x)+2 b \left (9 a b B-a^2 (6 A-8 C)+b^2 (3 A+2 C)\right ) \sec ^2(c+d x)\right ) \, dx \\ & = a^2 (3 A b+a B) x+\frac {A (a+b \sec (c+d x))^3 \sin (c+d x)}{d}-\frac {b^2 (6 a A-3 b B-5 a C) \sec (c+d x) \tan (c+d x)}{6 d}-\frac {b (3 A-C) (a+b \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {1}{2} \left (6 a^2 b B+b^3 B+2 a^3 C+3 a b^2 (2 A+C)\right ) \int \sec (c+d x) \, dx+\frac {1}{3} \left (b \left (9 a b B-a^2 (6 A-8 C)+b^2 (3 A+2 C)\right )\right ) \int \sec ^2(c+d x) \, dx \\ & = a^2 (3 A b+a B) x+\frac {\left (6 a^2 b B+b^3 B+2 a^3 C+3 a b^2 (2 A+C)\right ) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {A (a+b \sec (c+d x))^3 \sin (c+d x)}{d}-\frac {b^2 (6 a A-3 b B-5 a C) \sec (c+d x) \tan (c+d x)}{6 d}-\frac {b (3 A-C) (a+b \sec (c+d x))^2 \tan (c+d x)}{3 d}-\frac {\left (b \left (9 a b B-a^2 (6 A-8 C)+b^2 (3 A+2 C)\right )\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 d} \\ & = a^2 (3 A b+a B) x+\frac {\left (6 a^2 b B+b^3 B+2 a^3 C+3 a b^2 (2 A+C)\right ) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {A (a+b \sec (c+d x))^3 \sin (c+d x)}{d}+\frac {b \left (9 a b B-a^2 (6 A-8 C)+b^2 (3 A+2 C)\right ) \tan (c+d x)}{3 d}-\frac {b^2 (6 a A-3 b B-5 a C) \sec (c+d x) \tan (c+d x)}{6 d}-\frac {b (3 A-C) (a+b \sec (c+d x))^2 \tan (c+d x)}{3 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(509\) vs. \(2(192)=384\).

Time = 9.47 (sec) , antiderivative size = 509, normalized size of antiderivative = 2.65 \[ \int \cos (c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\cos ^5(c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (12 a^2 (3 A b+a B) (c+d x)-6 \left (6 a^2 b B+b^3 B+2 a^3 C+3 a b^2 (2 A+C)\right ) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+6 \left (6 a^2 b B+b^3 B+2 a^3 C+3 a b^2 (2 A+C)\right ) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {b^2 (9 a C+b (3 B+C))}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {2 b^3 C \sin \left (\frac {1}{2} (c+d x)\right )}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3}+\frac {4 b \left (3 A b^2+9 a b B+9 a^2 C+2 b^2 C\right ) \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}+\frac {2 b^3 C \sin \left (\frac {1}{2} (c+d x)\right )}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3}-\frac {b^2 (9 a C+b (3 B+C))}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {4 b \left (3 A b^2+9 a b B+9 a^2 C+2 b^2 C\right ) \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )}+12 a^3 A \sin (c+d x)\right )}{6 d (b+a \cos (c+d x))^3 (A+2 C+2 B \cos (c+d x)+A \cos (2 (c+d x)))} \]

[In]

Integrate[Cos[c + d*x]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^5*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(12*a^2*(3*A*b + a*B)*(c + d*x)
 - 6*(6*a^2*b*B + b^3*B + 2*a^3*C + 3*a*b^2*(2*A + C))*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 6*(6*a^2*b*B
 + b^3*B + 2*a^3*C + 3*a*b^2*(2*A + C))*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (b^2*(9*a*C + b*(3*B + C)))
/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2 + (2*b^3*C*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^3
+ (4*b*(3*A*b^2 + 9*a*b*B + 9*a^2*C + 2*b^2*C)*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2]) + (2*b^
3*C*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 - (b^2*(9*a*C + b*(3*B + C)))/(Cos[(c + d*x)/2]
+ Sin[(c + d*x)/2])^2 + (4*b*(3*A*b^2 + 9*a*b*B + 9*a^2*C + 2*b^2*C)*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] + Sin
[(c + d*x)/2]) + 12*a^3*A*Sin[c + d*x]))/(6*d*(b + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*(c
+ d*x)]))

Maple [A] (verified)

Time = 1.06 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.22

method result size
derivativedivides \(\frac {a^{3} A \sin \left (d x +c \right )+B \,a^{3} \left (d x +c \right )+a^{3} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 A \,a^{2} b \left (d x +c \right )+3 B \,a^{2} b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 C \tan \left (d x +c \right ) a^{2} b +3 a A \,b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 B \tan \left (d x +c \right ) a \,b^{2}+3 C a \,b^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+A \tan \left (d x +c \right ) b^{3}+B \,b^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-C \,b^{3} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(235\)
default \(\frac {a^{3} A \sin \left (d x +c \right )+B \,a^{3} \left (d x +c \right )+a^{3} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 A \,a^{2} b \left (d x +c \right )+3 B \,a^{2} b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 C \tan \left (d x +c \right ) a^{2} b +3 a A \,b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 B \tan \left (d x +c \right ) a \,b^{2}+3 C a \,b^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+A \tan \left (d x +c \right ) b^{3}+B \,b^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-C \,b^{3} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(235\)
parallelrisch \(\frac {-6 \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right ) \left (\frac {B \,b^{3}}{6}+a \left (A +\frac {C}{2}\right ) b^{2}+B \,a^{2} b +\frac {a^{3} C}{3}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+6 \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right ) \left (\frac {B \,b^{3}}{6}+a \left (A +\frac {C}{2}\right ) b^{2}+B \,a^{2} b +\frac {a^{3} C}{3}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+6 d \,a^{2} \left (A b +\frac {a B}{3}\right ) x \cos \left (3 d x +3 c \right )+2 b \left (\left (A +\frac {2 C}{3}\right ) b^{2}+3 B a b +3 C \,a^{2}\right ) \sin \left (3 d x +3 c \right )+2 \left (a^{3} A +B \,b^{3}+3 C a \,b^{2}\right ) \sin \left (2 d x +2 c \right )+a^{3} A \sin \left (4 d x +4 c \right )+18 d \,a^{2} \left (A b +\frac {a B}{3}\right ) x \cos \left (d x +c \right )+2 \sin \left (d x +c \right ) b \left (b^{2} \left (A +2 C \right )+3 B a b +3 C \,a^{2}\right )}{2 d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(300\)
risch \(3 a^{2} A b x +a^{3} B x -\frac {i a^{3} A \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}+\frac {i a^{3} A \,{\mathrm e}^{-i \left (d x +c \right )}}{2 d}-\frac {i b \left (3 B \,b^{2} {\mathrm e}^{5 i \left (d x +c \right )}+9 C a b \,{\mathrm e}^{5 i \left (d x +c \right )}-6 A \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-18 B a b \,{\mathrm e}^{4 i \left (d x +c \right )}-18 C \,a^{2} {\mathrm e}^{4 i \left (d x +c \right )}-12 A \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-36 B a b \,{\mathrm e}^{2 i \left (d x +c \right )}-36 C \,a^{2} {\mathrm e}^{2 i \left (d x +c \right )}-12 C \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-3 B \,b^{2} {\mathrm e}^{i \left (d x +c \right )}-9 C b a \,{\mathrm e}^{i \left (d x +c \right )}-6 A \,b^{2}-18 B a b -18 C \,a^{2}-4 C \,b^{2}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) a A \,b^{2}}{d}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B \,a^{2} b}{d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B \,b^{3}}{2 d}+\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{d}+\frac {3 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C \,b^{2}}{2 d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) a A \,b^{2}}{d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B \,a^{2} b}{d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B \,b^{3}}{2 d}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{d}-\frac {3 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C \,b^{2}}{2 d}\) \(484\)
norman \(\frac {\left (3 A \,a^{2} b +B \,a^{3}\right ) x +\left (-9 A \,a^{2} b -3 B \,a^{3}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\left (-9 A \,a^{2} b -3 B \,a^{3}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (3 A \,a^{2} b +B \,a^{3}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (6 A \,a^{2} b +2 B \,a^{3}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (6 A \,a^{2} b +2 B \,a^{3}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\frac {\left (2 a^{3} A -2 A \,b^{3}-6 B a \,b^{2}+B \,b^{3}-6 a^{2} b C +3 C a \,b^{2}-2 C \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}+\frac {\left (2 a^{3} A +2 A \,b^{3}+6 B a \,b^{2}+B \,b^{3}+6 a^{2} b C +3 C a \,b^{2}+2 C \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {2 \left (6 a^{3} A -B \,b^{3}-3 C a \,b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}-\frac {4 \left (6 a^{3} A -3 A \,b^{3}-9 B a \,b^{2}-9 a^{2} b C -C \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{3 d}-\frac {4 \left (6 a^{3} A +3 A \,b^{3}+9 B a \,b^{2}+9 a^{2} b C +C \,b^{3}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4}}-\frac {\left (6 a A \,b^{2}+6 B \,a^{2} b +B \,b^{3}+2 a^{3} C +3 C a \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {\left (6 a A \,b^{2}+6 B \,a^{2} b +B \,b^{3}+2 a^{3} C +3 C a \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(534\)

[In]

int(cos(d*x+c)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/d*(a^3*A*sin(d*x+c)+B*a^3*(d*x+c)+a^3*C*ln(sec(d*x+c)+tan(d*x+c))+3*A*a^2*b*(d*x+c)+3*B*a^2*b*ln(sec(d*x+c)+
tan(d*x+c))+3*C*tan(d*x+c)*a^2*b+3*a*A*b^2*ln(sec(d*x+c)+tan(d*x+c))+3*B*tan(d*x+c)*a*b^2+3*C*a*b^2*(1/2*sec(d
*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+A*tan(d*x+c)*b^3+B*b^3*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d
*x+c)+tan(d*x+c)))-C*b^3*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.17 \[ \int \cos (c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {12 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} d x \cos \left (d x + c\right )^{3} + 3 \, {\left (2 \, C a^{3} + 6 \, B a^{2} b + 3 \, {\left (2 \, A + C\right )} a b^{2} + B b^{3}\right )} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (2 \, C a^{3} + 6 \, B a^{2} b + 3 \, {\left (2 \, A + C\right )} a b^{2} + B b^{3}\right )} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (6 \, A a^{3} \cos \left (d x + c\right )^{3} + 2 \, C b^{3} + 2 \, {\left (9 \, C a^{2} b + 9 \, B a b^{2} + {\left (3 \, A + 2 \, C\right )} b^{3}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (3 \, C a b^{2} + B b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/12*(12*(B*a^3 + 3*A*a^2*b)*d*x*cos(d*x + c)^3 + 3*(2*C*a^3 + 6*B*a^2*b + 3*(2*A + C)*a*b^2 + B*b^3)*cos(d*x
+ c)^3*log(sin(d*x + c) + 1) - 3*(2*C*a^3 + 6*B*a^2*b + 3*(2*A + C)*a*b^2 + B*b^3)*cos(d*x + c)^3*log(-sin(d*x
 + c) + 1) + 2*(6*A*a^3*cos(d*x + c)^3 + 2*C*b^3 + 2*(9*C*a^2*b + 9*B*a*b^2 + (3*A + 2*C)*b^3)*cos(d*x + c)^2
+ 3*(3*C*a*b^2 + B*b^3)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)

Sympy [F]

\[ \int \cos (c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (a + b \sec {\left (c + d x \right )}\right )^{3} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \cos {\left (c + d x \right )}\, dx \]

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))**3*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Integral((a + b*sec(c + d*x))**3*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)*cos(c + d*x), x)

Maxima [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 280, normalized size of antiderivative = 1.46 \[ \int \cos (c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {12 \, {\left (d x + c\right )} B a^{3} + 36 \, {\left (d x + c\right )} A a^{2} b + 4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C b^{3} - 9 \, C a b^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 3 \, B b^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, C a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 18 \, B a^{2} b {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 18 \, A a b^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, A a^{3} \sin \left (d x + c\right ) + 36 \, C a^{2} b \tan \left (d x + c\right ) + 36 \, B a b^{2} \tan \left (d x + c\right ) + 12 \, A b^{3} \tan \left (d x + c\right )}{12 \, d} \]

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/12*(12*(d*x + c)*B*a^3 + 36*(d*x + c)*A*a^2*b + 4*(tan(d*x + c)^3 + 3*tan(d*x + c))*C*b^3 - 9*C*a*b^2*(2*sin
(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 3*B*b^3*(2*sin(d*x + c)/(sin
(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 6*C*a^3*(log(sin(d*x + c) + 1) - log(sin(d
*x + c) - 1)) + 18*B*a^2*b*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 18*A*a*b^2*(log(sin(d*x + c) + 1)
 - log(sin(d*x + c) - 1)) + 12*A*a^3*sin(d*x + c) + 36*C*a^2*b*tan(d*x + c) + 36*B*a*b^2*tan(d*x + c) + 12*A*b
^3*tan(d*x + c))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 438 vs. \(2 (185) = 370\).

Time = 0.38 (sec) , antiderivative size = 438, normalized size of antiderivative = 2.28 \[ \int \cos (c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\frac {12 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1} + 6 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} {\left (d x + c\right )} + 3 \, {\left (2 \, C a^{3} + 6 \, B a^{2} b + 6 \, A a b^{2} + 3 \, C a b^{2} + B b^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (2 \, C a^{3} + 6 \, B a^{2} b + 6 \, A a b^{2} + 3 \, C a b^{2} + B b^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (18 \, C a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 18 \, B a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 9 \, C a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, C b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 36 \, C a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 36 \, B a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, C b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 18 \, C a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 18 \, B a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 9 \, C a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, B b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, C b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/6*(12*A*a^3*tan(1/2*d*x + 1/2*c)/(tan(1/2*d*x + 1/2*c)^2 + 1) + 6*(B*a^3 + 3*A*a^2*b)*(d*x + c) + 3*(2*C*a^3
 + 6*B*a^2*b + 6*A*a*b^2 + 3*C*a*b^2 + B*b^3)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(2*C*a^3 + 6*B*a^2*b + 6*
A*a*b^2 + 3*C*a*b^2 + B*b^3)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(18*C*a^2*b*tan(1/2*d*x + 1/2*c)^5 + 18*B*
a*b^2*tan(1/2*d*x + 1/2*c)^5 - 9*C*a*b^2*tan(1/2*d*x + 1/2*c)^5 + 6*A*b^3*tan(1/2*d*x + 1/2*c)^5 - 3*B*b^3*tan
(1/2*d*x + 1/2*c)^5 + 6*C*b^3*tan(1/2*d*x + 1/2*c)^5 - 36*C*a^2*b*tan(1/2*d*x + 1/2*c)^3 - 36*B*a*b^2*tan(1/2*
d*x + 1/2*c)^3 - 12*A*b^3*tan(1/2*d*x + 1/2*c)^3 - 4*C*b^3*tan(1/2*d*x + 1/2*c)^3 + 18*C*a^2*b*tan(1/2*d*x + 1
/2*c) + 18*B*a*b^2*tan(1/2*d*x + 1/2*c) + 9*C*a*b^2*tan(1/2*d*x + 1/2*c) + 6*A*b^3*tan(1/2*d*x + 1/2*c) + 3*B*
b^3*tan(1/2*d*x + 1/2*c) + 6*C*b^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

Mupad [B] (verification not implemented)

Time = 19.07 (sec) , antiderivative size = 2437, normalized size of antiderivative = 12.69 \[ \int \cos (c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \]

[In]

int(cos(c + d*x)*(a + b/cos(c + d*x))^3*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

(2*a^2*atan((a^2*(tan(c/2 + (d*x)/2)*(32*B^2*a^6 + 8*B^2*b^6 + 32*C^2*a^6 + 288*A^2*a^2*b^4 + 288*A^2*a^4*b^2
+ 96*B^2*a^2*b^4 + 288*B^2*a^4*b^2 + 72*C^2*a^2*b^4 + 96*C^2*a^4*b^2 + 96*A*B*a*b^5 + 192*A*B*a^5*b + 48*B*C*a
*b^5 + 192*B*C*a^5*b + 576*A*B*a^3*b^3 + 288*A*C*a^2*b^4 + 192*A*C*a^4*b^2 + 320*B*C*a^3*b^3) - a^2*(3*A*b + B
*a)*(32*B*a^3 + 16*B*b^3 + 32*C*a^3 + 96*A*a*b^2 + 96*A*a^2*b + 96*B*a^2*b + 48*C*a*b^2)*1i)*(3*A*b + B*a) + a
^2*(tan(c/2 + (d*x)/2)*(32*B^2*a^6 + 8*B^2*b^6 + 32*C^2*a^6 + 288*A^2*a^2*b^4 + 288*A^2*a^4*b^2 + 96*B^2*a^2*b
^4 + 288*B^2*a^4*b^2 + 72*C^2*a^2*b^4 + 96*C^2*a^4*b^2 + 96*A*B*a*b^5 + 192*A*B*a^5*b + 48*B*C*a*b^5 + 192*B*C
*a^5*b + 576*A*B*a^3*b^3 + 288*A*C*a^2*b^4 + 192*A*C*a^4*b^2 + 320*B*C*a^3*b^3) + a^2*(3*A*b + B*a)*(32*B*a^3
+ 16*B*b^3 + 32*C*a^3 + 96*A*a*b^2 + 96*A*a^2*b + 96*B*a^2*b + 48*C*a*b^2)*1i)*(3*A*b + B*a))/(64*B*C^2*a^9 -
64*B^2*C*a^9 - 192*B^3*a^8*b + 1728*A^3*a^4*b^5 - 1728*A^3*a^5*b^4 + 16*B^3*a^3*b^6 + 192*B^3*a^5*b^4 - 32*B^3
*a^6*b^3 + 576*B^3*a^7*b^2 + a^2*(tan(c/2 + (d*x)/2)*(32*B^2*a^6 + 8*B^2*b^6 + 32*C^2*a^6 + 288*A^2*a^2*b^4 +
288*A^2*a^4*b^2 + 96*B^2*a^2*b^4 + 288*B^2*a^4*b^2 + 72*C^2*a^2*b^4 + 96*C^2*a^4*b^2 + 96*A*B*a*b^5 + 192*A*B*
a^5*b + 48*B*C*a*b^5 + 192*B*C*a^5*b + 576*A*B*a^3*b^3 + 288*A*C*a^2*b^4 + 192*A*C*a^4*b^2 + 320*B*C*a^3*b^3)
- a^2*(3*A*b + B*a)*(32*B*a^3 + 16*B*b^3 + 32*C*a^3 + 96*A*a*b^2 + 96*A*a^2*b + 96*B*a^2*b + 48*C*a*b^2)*1i)*(
3*A*b + B*a)*1i - a^2*(tan(c/2 + (d*x)/2)*(32*B^2*a^6 + 8*B^2*b^6 + 32*C^2*a^6 + 288*A^2*a^2*b^4 + 288*A^2*a^4
*b^2 + 96*B^2*a^2*b^4 + 288*B^2*a^4*b^2 + 72*C^2*a^2*b^4 + 96*C^2*a^4*b^2 + 96*A*B*a*b^5 + 192*A*B*a^5*b + 48*
B*C*a*b^5 + 192*B*C*a^5*b + 576*A*B*a^3*b^3 + 288*A*C*a^2*b^4 + 192*A*C*a^4*b^2 + 320*B*C*a^3*b^3) + a^2*(3*A*
b + B*a)*(32*B*a^3 + 16*B*b^3 + 32*C*a^3 + 96*A*a*b^2 + 96*A*a^2*b + 96*B*a^2*b + 48*C*a*b^2)*1i)*(3*A*b + B*a
)*1i + 192*A*C^2*a^8*b + 384*B^2*C*a^8*b + 48*A*B^2*a^2*b^7 + 768*A*B^2*a^4*b^5 - 192*A*B^2*a^5*b^4 + 2880*A*B
^2*a^6*b^3 - 1344*A*B^2*a^7*b^2 + 576*A^2*B*a^3*b^6 - 288*A^2*B*a^4*b^5 + 4032*A^2*B*a^5*b^4 - 2880*A^2*B*a^6*
b^3 + 432*A*C^2*a^4*b^5 + 576*A*C^2*a^6*b^3 + 1728*A^2*C*a^4*b^5 - 864*A^2*C*a^5*b^4 + 1152*A^2*C*a^6*b^3 - 57
6*A^2*C*a^7*b^2 + 144*B*C^2*a^5*b^4 + 192*B*C^2*a^7*b^2 + 96*B^2*C*a^4*b^5 + 640*B^2*C*a^6*b^3 - 96*B^2*C*a^7*
b^2 - 384*A*B*C*a^8*b + 288*A*B*C*a^3*b^6 + 2496*A*B*C*a^5*b^4 - 576*A*B*C*a^6*b^3 + 1536*A*B*C*a^7*b^2))*(3*A
*b + B*a))/d - (atanh((2*tan(c/2 + (d*x)/2)*((B*b^3)/2 + C*a^3 + 3*A*a*b^2 + 3*B*a^2*b + (3*C*a*b^2)/2)*(32*B^
2*a^6 + 8*B^2*b^6 + 32*C^2*a^6 + 288*A^2*a^2*b^4 + 288*A^2*a^4*b^2 + 96*B^2*a^2*b^4 + 288*B^2*a^4*b^2 + 72*C^2
*a^2*b^4 + 96*C^2*a^4*b^2 + 96*A*B*a*b^5 + 192*A*B*a^5*b + 48*B*C*a*b^5 + 192*B*C*a^5*b + 576*A*B*a^3*b^3 + 28
8*A*C*a^2*b^4 + 192*A*C*a^4*b^2 + 320*B*C*a^3*b^3))/(64*B*C^2*a^9 - 2*((B*b^3)/2 + C*a^3 + 3*A*a*b^2 + 3*B*a^2
*b + (3*C*a*b^2)/2)^2*(32*B*a^3 + 16*B*b^3 + 32*C*a^3 + 96*A*a*b^2 + 96*A*a^2*b + 96*B*a^2*b + 48*C*a*b^2) - 6
4*B^2*C*a^9 - 192*B^3*a^8*b + 1728*A^3*a^4*b^5 - 1728*A^3*a^5*b^4 + 16*B^3*a^3*b^6 + 192*B^3*a^5*b^4 - 32*B^3*
a^6*b^3 + 576*B^3*a^7*b^2 + 192*A*C^2*a^8*b + 384*B^2*C*a^8*b + 48*A*B^2*a^2*b^7 + 768*A*B^2*a^4*b^5 - 192*A*B
^2*a^5*b^4 + 2880*A*B^2*a^6*b^3 - 1344*A*B^2*a^7*b^2 + 576*A^2*B*a^3*b^6 - 288*A^2*B*a^4*b^5 + 4032*A^2*B*a^5*
b^4 - 2880*A^2*B*a^6*b^3 + 432*A*C^2*a^4*b^5 + 576*A*C^2*a^6*b^3 + 1728*A^2*C*a^4*b^5 - 864*A^2*C*a^5*b^4 + 11
52*A^2*C*a^6*b^3 - 576*A^2*C*a^7*b^2 + 144*B*C^2*a^5*b^4 + 192*B*C^2*a^7*b^2 + 96*B^2*C*a^4*b^5 + 640*B^2*C*a^
6*b^3 - 96*B^2*C*a^7*b^2 - 384*A*B*C*a^8*b + 288*A*B*C*a^3*b^6 + 2496*A*B*C*a^5*b^4 - 576*A*B*C*a^6*b^3 + 1536
*A*B*C*a^7*b^2))*(B*b^3 + 2*C*a^3 + 6*A*a*b^2 + 6*B*a^2*b + 3*C*a*b^2))/d - (tan(c/2 + (d*x)/2)*(2*A*a^3 + 2*A
*b^3 + B*b^3 + 2*C*b^3 + 6*B*a*b^2 + 3*C*a*b^2 + 6*C*a^2*b) + tan(c/2 + (d*x)/2)^7*(2*A*b^3 - 2*A*a^3 - B*b^3
+ 2*C*b^3 + 6*B*a*b^2 - 3*C*a*b^2 + 6*C*a^2*b) - tan(c/2 + (d*x)/2)^3*(6*A*a^3 + 2*A*b^3 - B*b^3 - (2*C*b^3)/3
 + 6*B*a*b^2 - 3*C*a*b^2 + 6*C*a^2*b) - tan(c/2 + (d*x)/2)^5*(2*A*b^3 - 6*A*a^3 + B*b^3 - (2*C*b^3)/3 + 6*B*a*
b^2 + 3*C*a*b^2 + 6*C*a^2*b))/(d*(2*tan(c/2 + (d*x)/2)^2 - 2*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 - 1))